

BCA / M-19
MATHEMATICAL FOUNDATION-II
Paper-BCA-123

Time allowed : 3 hours]

[Maximum marks : 80]

Note : Attempt five questions in all. Question No. 1 is compulsory. Attempt four more questions selecting exactly one question from each unit. All questions carry equal marks.

Compulsory Question

1. Explain following: $8 \times 2 = 16$
- (a) Truth table
 - (b) Mathematical induction
 - (c) Group
 - (d) Cosets
 - (e) Singular matrix
 - (f) Rank of a matrix
 - (g) Eigen vector
 - (h) Skew-Hermitian matrix.

Unit-I

2. (a) Show that $\sim(p \Leftrightarrow q) \equiv p \Leftrightarrow \sim q$ 8
- (b) Using the principle of mathematical induction, prove that for all $n \in \mathbb{N}$, $11^{n+2} + 12^{2n+1}$ is divisible by 133. 8

3. State and prove the laws of logic.

Unit-II

4. (a) If (G, \cdot) be a group; then solve the equation $a \cdot x \cdot a = b$ in G 8
- (b) Let H be a subgroup of group G and define $N(H) = \{\alpha \in G : \alpha H = H\alpha\}$. Prove that $N(H)$ is a subgroup of G 8
5. (a) Let $H = \{5x : x \in Z\}$ be a subgroup of I . Prepare the composition table for Z/H . 8
- (b) Let D be an integral domain and F be a field. Define a mapping $\psi : D \rightarrow F$ such that $\psi(\alpha) = (\alpha, 1)$ for all $\alpha \in D$. Then show that ψ is an isomorphism of D into F . 8

Unit-III

6. Find A^{-1} , where $A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$. Hence, solve the system of linear equations:
- $$x + 2y - 3z = -4$$
- $$2x + 3y + 2z = 2$$
- $$3x - 3y - 4z = 11$$

(3)

7. Solve the following system of equations :

$$x - y + 2z - 3w = 0$$

$$3x + 2y - 4z + w = 0$$

$$4x - 2y + 9w = 0$$

16

Unit-IV

8. (a) Prove that the eigen values of a triangular matrix are the diagonal elements of the matrix. 8

- (b) Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a Hermitian matrix are orthogonal. 8

9. Diagonalize, if possible, the matrix 16

$$\begin{bmatrix} 6 & 0 & 0 \\ 0 & 7 & -4 \\ 9 & 1 & 3 \end{bmatrix}$$

1928